Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Nanotechnol ; 16(6): 910-921, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33187586

RESUMO

Avascular necrosis (AVN) of the bones remains a major clinical challenge. Fractures in the talus, the scaphoid, and the neck of the femur are especially challenging to heal due to the low blood vessel network and the lack of collateral blood supply. These fractures are associated with high rates of nonunion and increased infections that require repeated operations. Conventional treatments by autografting or allografting bone replacement and synthetic bone implants have limitations, including the invasiveness of operative procedures, tissue supply insufficiency, and the risk of host rejection. The advancement in tissue engineering has revealed the potential of stem cells as restorative agents for bone injuries. The administration of mesenchymal stem cells (MSCs) into the talus, the scaphoid, and the neck of the femur could produce enhanced osteogenesis via the manipulation of MSC culture conditions. In this study, we used hydroxyapatite as the nanomaterial, and hypoxic milieu to enhance MSC differentiation capacity into the osteogenic lineage, allowing for more rapid and efficient bone cell replacement treatment. Our results demonstrate 1% oxygen and 12.5 µg/mL of hydroxyapatite (HAP) as the optimal conditions to incorporate the osteogenic medium for the osteogenic induction of MSCs. We also established a proof of concept that the addition of HAP and hypoxic conditions could augment the osteoinductive capacity of MSCs. We also developed an accurate mathematical model to support future bone cell replacement therapy.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Diferenciação Celular , Durapatita , Humanos , Modelos Teóricos , Estresse Oxidativo
3.
Int J Mol Sci ; 19(2)2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29438279

RESUMO

Ocular microbial infection has emerged as a major public health crisis during the past two decades. A variety of causative agents can cause ocular microbial infections; which are characterized by persistent and destructive inflammation of the ocular tissue; progressive visual disturbance; and may result in loss of visual function in patients if early and effective treatments are not received. The conventional therapeutic approaches to treat vision impairment and blindness resulting from microbial infections involve antimicrobial therapy to eliminate the offending pathogens or in severe cases; by surgical methods and retinal prosthesis replacing of the infected area. In cases where there is concurrent inflammation, once infection is controlled, anti-inflammatory agents are indicated to reduce ocular damage from inflammation which ensues. Despite advances in medical research; progress in the control of ocular microbial infections remains slow. The varying level of ocular tissue recovery in individuals and the incomplete visual functional restoration indicate the chief limitations of current strategies. The development of a more extensive therapy is needed to help in healing to regain vision in patients. Stem cells are multipotent stromal cells that can give rise to a vast variety of cell types following proper differentiation protocol. Stem cell therapy shows promise in reducing inflammation and repairing tissue damage on the eye caused by microbial infections by its ability to modulate immune response and promote tissue regeneration. This article reviews a selected list of common infectious agents affecting the eye; which include fungi; viruses; parasites and bacteria with the aim of discussing the current antimicrobial treatments and the associated therapeutic challenges. We also provide recent updates of the advances in stem cells studies on sepsis therapy as a suggestion of optimum treatment regime for ocular microbial infections.


Assuntos
Infecções Oculares/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Anti-Infecciosos/efeitos adversos , Anti-Infecciosos/uso terapêutico , Infecções Oculares/tratamento farmacológico , Humanos , Camundongos
4.
J Mol Diagn ; 8(3): 330-4, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16825505

RESUMO

A point mutation in the JAK2 gene, a member of the tyrosine kinase family, was recently identified and shown to be associated with several myeloproliferative disorders. Several studies identified the same JAK2 point mutation (1,849G>T), resulting in the substitution of a valine to phenylalanine at codon 617 (V617F). We developed a simple and sensitive method to detect this mutation via polymerase chain reaction and probe dissociation analysis using the LightCycler platform, and we compared this method to existing restriction fragment-length polymorphism, direct sequencing, and amplification refractory mutation system methods. We found that the LightCycler method offered advantages of speed, reliability, and more straightforward interpretation over the restriction fragment-length polymorphism and sequencing approaches.


Assuntos
Análise Mutacional de DNA/métodos , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Fragmento de Restrição , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Análise Mutacional de DNA/normas , Humanos , Janus Quinase 2 , Técnicas de Sonda Molecular , Transtornos Mieloproliferativos/diagnóstico , Transtornos Mieloproliferativos/genética , Mutação Puntual , Mapeamento por Restrição , Sensibilidade e Especificidade , Análise de Sequência de DNA , Software , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...